omxRAMtoML

omxRAMtoML

Wiki home page

Table of Contents 

Usage

This function accepts a model as input, and returns a model as output where all the RAM objective functions have been transformed to either ML or FIML objective functions, where the necessary algebras have been auto-generated in order to calculate the expected covariance and means matrices.

omxRAMtoML(model)

Arguments

model a MxModel object.

Examples

# Read libraries and set options.
 
require(OpenMx)
 
# ----------------------------------
# Read the data and print descriptive statistics.
 
data(factorExample1)
 
# ----------------------------------
# Build an OpenMx single factor FIML model with fixed variance
 
indicators <- names(factorExample1)
latents <- c("F1")
loadingLabels <- paste("b_", indicators, sep="")
uniqueLabels <- paste("U_", indicators, sep="")
meanLabels <- paste("M_", indicators, sep="")
factorVarLabels <- paste("Var_", latents, sep="")
 
oneFactorRaw1 <- mxModel("Single Factor FIML Model with Fixed Variance",
    type="RAM",
    manifestVars=indicators,
    latentVars=latents,
    mxPath(from=latents, to=indicators, 
           arrows=1, connect="all.pairs", 
           free=TRUE, values=.2, 
           labels=loadingLabels),
    mxPath(from=indicators, 
           arrows=2, 
           free=TRUE, values=.8, 
           labels=uniqueLabels),
    mxPath(from=latents,
           arrows=2, 
           free=FALSE, values=1, 
           labels=factorVarLabels),
    mxPath(from="one", to=indicators, 
           arrows=1, free=TRUE, values=.1, 
           labels=meanLabels),
    mxData(observed=factorExample1, type="raw")
    )
oneFactorRawML <- omxRAMtoML(oneFactorRaw1)
oneFactorRawMLOut <- mxRun(oneFactorRawML, suppressWarnings=TRUE)
 
	<em># See the results...</em>
summary(oneFactorRawMLOut)	
	data:
	$`Single Factor FIML Model with Fixed Variance.data`
	       x1                 x2                  x3                 x4          
	 Min.   :-2.99780   Min.   :-1.579400   Min.   :-2.13250   Min.   :-3.00650  
	 1st Qu.:-0.62555   1st Qu.:-0.365850   1st Qu.:-0.26977   1st Qu.:-0.69588  
	 Median :-0.03170   Median : 0.007300   Median : 0.05055   Median :-0.04330  
	 Mean   :-0.01161   Mean   :-0.006821   Mean   : 0.02396   Mean   :-0.03135  
	 3rd Qu.: 0.59815   3rd Qu.: 0.333675   3rd Qu.: 0.33495   3rd Qu.: 0.68142  
	 Max.   : 2.54270   Max.   : 1.800600   Max.   : 1.26530   Max.   : 2.88340  
	       x5                 x6                 x7                 x8          
	 Min.   :-3.20380   Min.   :-3.54670   Min.   :-4.15680   Min.   :-2.05160  
	 1st Qu.:-0.71252   1st Qu.:-0.98603   1st Qu.:-1.07967   1st Qu.:-0.64263  
	 Median :-0.02015   Median :-0.07750   Median :-0.14610   Median :-0.05310  
	 Mean   :-0.04548   Mean   :-0.09178   Mean   :-0.06732   Mean   :-0.03902  
	 3rd Qu.: 0.62877   3rd Qu.: 0.77910   3rd Qu.: 0.91097   3rd Qu.: 0.58552  
	 Max.   : 2.85080   Max.   : 3.26040   Max.   : 3.74800   Max.   : 2.63280  
	       x9          
	 Min.   :-3.68950  
	 1st Qu.:-0.83327  
	 Median :-0.04285  
	 Mean   :-0.05999  
	 3rd Qu.: 0.72447  
	 Max.   : 3.47750  
 
	free parameters:
	   name matrix row col    Estimate  Std.Error lbound ubound
	1  b_x1      A  x1  F1  0.68395558 0.03517218              
	2  b_x2      A  x2  F1  0.32481984 0.02238500              
	3  b_x3      A  x3  F1  0.10886694 0.02076627              
	4  b_x4      A  x4  F1  0.47440890 0.04457067              
	5  b_x5      A  x5  F1  0.60180412 0.04221052              
	6  b_x6      A  x6  F1  1.12063877 0.04569668              
	7  b_x7      A  x7  F1  1.25933139 0.04883099              
	8  b_x8      A  x8  F1  0.64739267 0.03057637              
	9  b_x9      A  x9  F1  0.71872734 0.04926900              
	10 U_x1      S  x1  x1  0.35279611 0.02484526              
	11 U_x2      S  x2  x2  0.17619283 0.01193414              
	12 U_x3      S  x3  x3  0.19353556 0.01230270              
	13 U_x4      S  x4  x4  0.79987497 0.05201061              
	14 U_x5      S  x5  x5  0.63305704 0.04272612              
	15 U_x6      S  x6  x6  0.36762720 0.03207912              
	16 U_x7      S  x7  x7  0.34023767 0.03483551              
	17 U_x8      S  x8  x8  0.23403773 0.01730076              
	18 U_x9      S  x9  x9  0.85441146 0.05777368              
	19 M_x1      M   1  x1 -0.01161303 0.04050289              
	20 M_x2      M   1  x2 -0.00682285 0.02373273              
	21 M_x3      M   1  x3  0.02396104 0.02026669              
	22 M_x4      M   1  x4 -0.03135672 0.04527295              
	23 M_x5      M   1  x5 -0.04548168 0.04460893              
	24 M_x6      M   1  x6 -0.09178376 0.05696533              
	25 M_x7      M   1  x7 -0.06732317 0.06204879              
	26 M_x8      M   1  x8 -0.03902037 0.03613431              
	27 M_x9      M   1  x9 -0.05999675 0.05235709              
 
	observed statistics:  4500 
	estimated parameters:  27 
	degrees of freedom:  4473 
	-2 log likelihood:  9706.388 
	saturated -2 log likelihood:  NA 
	number of observations:  500 
	chi-square:  NA 
	p:  NA 
	Information Criteria: 
	     df Penalty Parameters Penalty Sample-Size Adjusted
	AIC    760.3878           9760.388                   NA
	BIC -18091.5542           9874.182             9788.483
	CFI: NA 
	TLI: NA 
	RMSEA:  NA 

Please add material here as you learn... If you have questions not answers, then add those here: That's how a wiki works.